Press Releases
A Game-Changing Metal
A metal with the ability to alter its shape and the way that Boeing does wind tunnel testing? Boeing is working alongside members of the European Transonic Windtunnel (ETW), NASA Langley National Transonic Facility (NTF) and supplier Deharde GmbH to develop an actuation system – based on Shape-Memory Alloy (SMA) - that is capable of just that.
SMA is a metal with unique properties that allow it to change shape, meaning it can do things like stretch or twist, by heating and cooling and still “remember” its original shape. Boeing is taking that metal and using it to create actuation systems that can address a wide range of applications from moving control surfaces to actuating valves to morphing airplanes and even to actuators that automatically respond to their environment.
A group called the Wind Tunnel Remote Control Actuation (RCA) team, comprised of world-class subject matter experts, including technology developers and wind tunnel test experts, is testing how SMA actuation is incorporated within a wind tunnel model to significantly improve testing efficiencies and provide a much richer data set for designing and certifying airplanes.
Over the past 10 months, a paradigm shift in wind tunnel testing has been underway. With the push of a button, the RCA team can now control spoiler or aileron settings on their B-787 half model from the ETW control room. These changes can be made while the wind tunnel is still on, saving countless hours and financial resources as they can use a singular model, instead of multiple individual parts, to acquire a robust dataset. In fact, the team showed that the time required to obtain a typical set of test points could be reduced by 80%. Next year, the team plans to show that this capability can be applied to other facilities by demonstrating it in the NASA NTF.
Shape Memory Alloy being tested at European Transonic Wind Tunnel. Photo: © ETW.
Without SMA actuation technology, testing at the European Transonic Wind Tunnel requires data scientists to use static models. A different model or components need to be built for each configuration, translating to high costs as several different configurations would need to be setup and the wind tunnel would need to be turned off and on many times to make model changes. This is particularly costly in a cryogenic environment where it takes a long time to get the model and the tunnel to a stable operating temperature.
Additionally, SMA actuators that deploy vortex generators have been installed and tested in flight as part of the 2019 ecoDemonstrator program. In this and other applications Boeing is leading the way in the application of these actuator systems to greatly improve fuel efficiency, lower carbon dioxide emissions, reduce drag and lead to more reliable, safer, and greener aviation.
“Wind tunnel testing is an extremely important part of Boeing’s airplane development process,” said F. Tad Calkins, BR&T Aeromechanics. “This technology gives us a tool to be much more efficient about it and to test in new and highly valuable ways.”
The RCA team's achievements were recognised by the Boeing R&T Engineering Team of the Year 2019 award.
This work received funding from the German Federal Ministry for Economic Affairs and Energy LuFo V-2/2015-2019 under grant agreement no 20Q1518B.
Background
ETW - Pushes the Limits
Wind tunnels, using scaled down aircraft models, are the major source of aerodynamic design data for new aircraft projects. Wind tunnels are indispensable tools for aerodynamic research and aircraft development; they complement and validate flow simulation methods on the most powerful computers.
ETW, the European Transonic Wind Tunnel, was designed and constructed by the four European countries France, Germany, United Kingdom and The Netherlands. It is operated based on a non-profit policy by the ETW GmbH, founded in 1988. Its location in Cologne, Germany, is right in the middle of Europe.
European researchers and engineers harness ETW’s capabilities for advancing aeronautical science into aircraft innovation by accessing real-flight conditions in this cutting edge ground-test laboratory.
ETW is the worldwide leading wind tunnel for testing aircraft at real flight conditions. Aircraft performance and their flight envelope limits can be accurately determined with unique quality at ETW long before flight testing of a first prototype. This enables significant reductions in the technical and economic risks associated with the development of new aircraft. Manufacturers from all over the world take advantage of the exceptional features of this high-tech facility enhancing the performance, economic viability, and environmental friendliness of their future aircraft.
ETW – Erweitert Horizonte
Aerodynamische Entwurfsdaten für neue Flugzeugprojekte werden zu einem großen Teil aus Windkanaluntersuchungen an maßstäblich verkleinerten Flugzeugmodellen gewonnen. Windkanäle sind unverzichtbare Werkzeuge sowohl für die Strömungsforschung als auch für die Flugzeugentwicklung; sie ergänzen und validieren Verfahren zur Strömungssimulation auf modernsten Hochleistungsrechnern.
Der Europäische Transschall-Windkanal ETW ist eine transnationale Forschungseinrichtung in Köln. Er wurde von den vier Staaten Frankreich, Deutschland, Großbritannien und den Niederlanden entwickelt und gebaut. Betrieben wird er von der ETW GmbH, die als eigenständiges Non-Profit-Unternehmen 1988 gegründet wurde.
Der ETW erlaubt europäischen Forschenden und Ingenieur:innen, tatsächliche Flugzustände unter Laborbedingungen am Boden darzustellen, um wissenschaftliche Erkenntnisse zu erarbeiten und in Luftfahrtinnovationen zu überführen.
Der ETW ist der weltweit führende Windkanal, in dem Luftfahrzeuge unter wirklichkeitsgetreuen Flugbedingungen getestet werden können. Lange bevor der erste Prototyp für einen Flugtest zur Verfügung steht, können im ETW die Leistungsfähigkeit und die Flugbereichsgrenzen eines Neuentwurfs genauestens und mit einzigartiger Qualität bestimmt werden. Dies reduziert erheblich die technischen und wirtschaftlichen Risiken, die mit der Entwicklung neuer Luftfahrzeuge verbunden sind. Hersteller aus aller Welt nutzen die außergewöhnlichen Möglichkeiten dieser Hightech-Einrichtung, um die Leistungsfähigkeit, die Wirtschaftlichkeit und die Umweltfreundlichkeit ihrer zukünftigen Produkte nachhaltig zu verbessern.