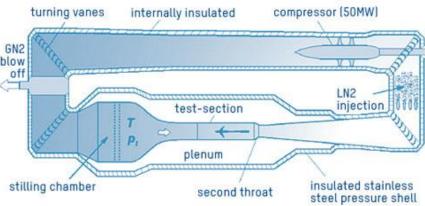


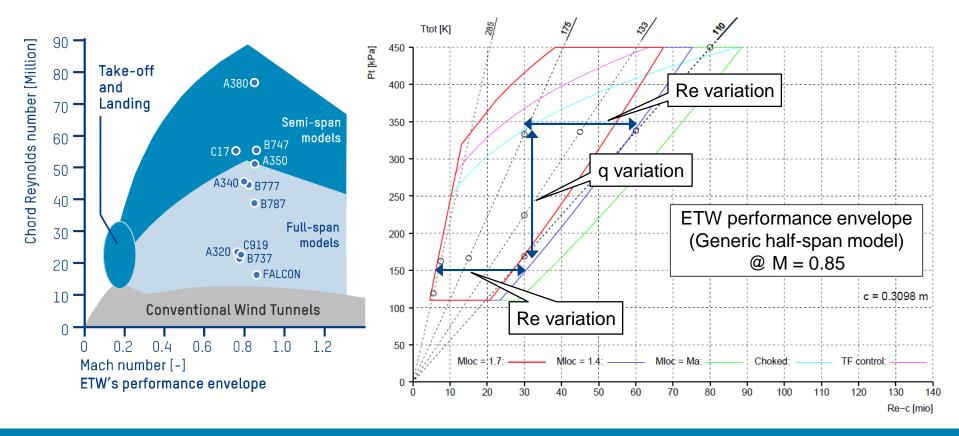
Half-Span Model Testing Capability at the European Transonic Windtunnel (ETW)

Jae-Hun YOU Test & Data Systems Engineer


The 12th International Symposium on Strain-Gauge Balances, Buffalo, NY

ETW Aerodynamic Circuit

- Cryogenic and pressurized transonic windtunnel
- 2.4 m x 2.0 m x 9.0 m test section
- 50 MW two-stage axial compressor
- Flow temperature & pressure level are controlled by injection of LN2 and exhaust of GN2
- Anti-turbulence screens and large contraction ratio (12:1) prior to the test section ensure low turbulence levels



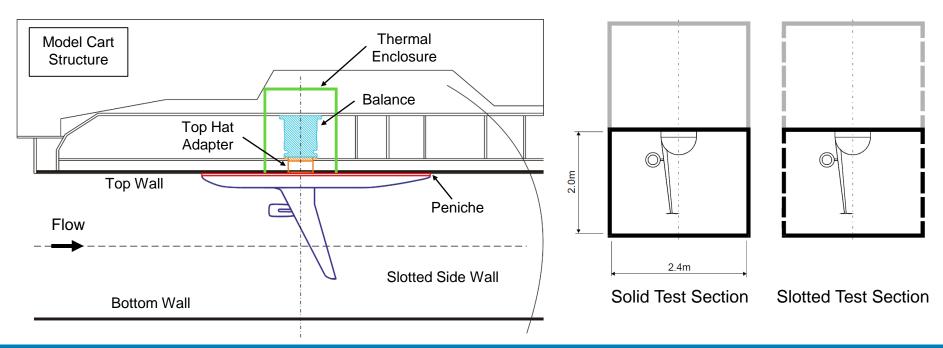
ETW's Key Characteristics and Capabilities

- > Take-off, landing, cruise and off-design testing at real-flight Reynolds numbers
- Separate analysis of compressibility (Mach number), viscosity (Re-number) and aero-elasticity (dynamic pressure) effects possible

30 Years of ETW's Half-Span Model Testing

1992	Development plans
1995 - 97	Design and manufacturing of HMB1
1998	Commissioning of HMB calibration rig
1998	First calibration of HMB1
1998	PETW HM test section selection tests
1999	First Client HM tests
2002	HM wall interference tests
2002	First high-speed half model tests
2014	First HM acoustics measurement
2014	Develop and manufacturing of HMB2
2018	Develop and manufacturing of HMB3
2019	First HM tests with SMA remote controls
Since 1999	Multiple low- & high-speed half-span model tests successfully performed

Half-span model in the PETW test section



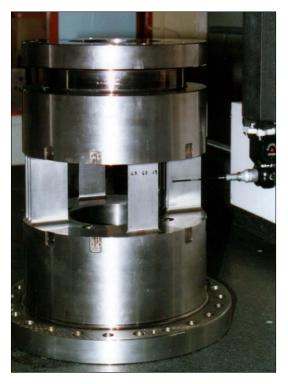
Commissioning Half Model (CHM) in the ETW test section

Half-Span Model System

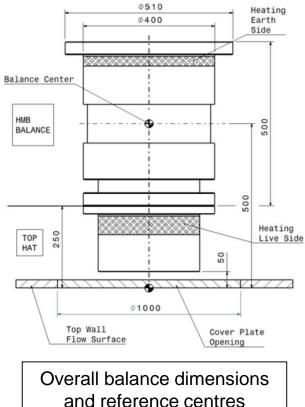
- > Half-model balance installed in the Model Cart
- > ETW has two Model Carts (MC), MC1 allows HM testing
- Comprehensive thermal control system decouples the balance and turntable from ETW's variable temperature operating environment
- > Turntable system allows model incidence up to ± 45°
- > Both solid and slotted test section (up to 7.4% porosity) available

ETW Half-Span Model Balances at a Glance

- > Three HM balances
- Six-component design (one component in the direction of model weight, SF)
- Two independent strain-gauge bridge sets for each component
- Designed for operation at ambient temperature
- > Diameter 400 mm, Height 500 mm
- > MRC 500 mm above top wall


*) Combined operating static about the Moment Reference		HMB1	HMB2	HMB3	
At ETW since		1999	2014	2018	
Manufacturer		ARA	NLR	NLR	
Axial Force*)	AF	± 5 000 N	± 5000 N	± 3 000 N	
Normal Force*)	NF	± 50 000 N	± 50 000 N	± 30 000 N	
Rolling Moment*)	RM	± 30 000 Nm	± 30 000 Nm	± 18 000 Nm	
Pitching Moment*)	PM	± 4 000 Nm	± 4 000 Nm	± 4 000 Nm	
Yawing Moment*)	ΥM	± 3 000 Nm	± 5 500 Nm	± 3 300 Nm	

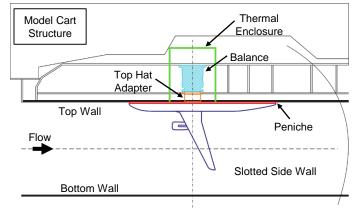
The 12th International Symposium on Strain-Gauge Balances, Buffalo, NY

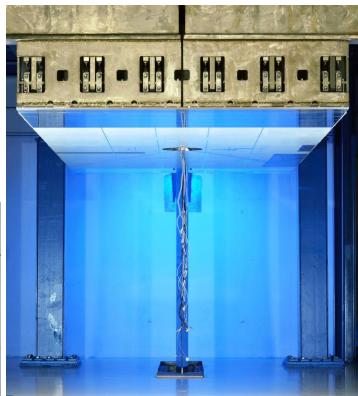

Page 6

Half-Model Balance 1 (HMB1)

Bare balance structure being inspected just prior to the gauge installation

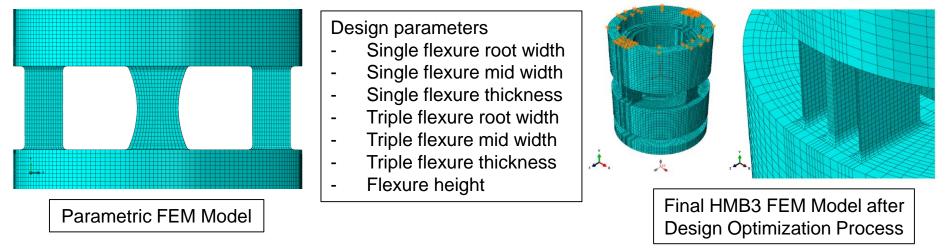
Component	Sensitivity [N/µV] (Each Bridge)
NF	8.0
AF	0.9
PM	3.5
RM	7.0
YM	1.0


- > Maraging Steel
- > NF, AF & PM Accuracy
 - 0.10% (50-100% FR)
 - 0.05% (0-50% FR)
- Two independent gauge sets for each load component
- > 10x Pt100 temperature sensors
- Heating foils attached to the balance earth side and top-hat adapter (balance live side)



Half-Model Interfaces

- Current interface design of HMB1 requires removal of top wall from the model cart to provide sufficient clearance for the balance to be removed or installed from above
- > HMB2 & HMB3 have been designed with a removable top flange to enable installation from below without removing the top wall
- Significantly reductions in time and manpower requirements to exchange HM balances



Half-Model Balance 2 & 3 (HMB2 & HMB3)

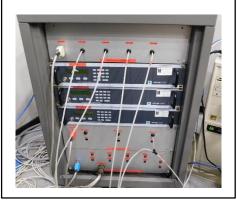
- > Two new members of ETW's balance family
 - Designed and manufactured by NLR (Netherlands Aerospace Centre)
 - Overall design based on HMB1 single piece concept
 - With improved mounting features (e.g. removable top-flange joint)
 - Optimized flexure design by using parametric FEM model
 - HMB2
 - Same load limits as the HMB1, a direct successor of HMB1
 - HMB3
 - Lower load limits (60% of HMB1), but higher sensitivity
 - Optimized for low-speed performance & laminar testing

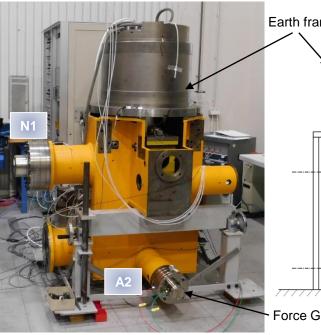
Instrumentation Details

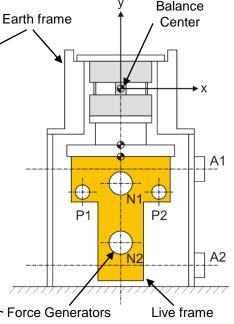
- > Two independent gauge sets
- > Each bridge has six wire configuration
- Instrumented with 10 Pt100 temperature sensors
- Usage of dedicated material for potentially severe environmental conditions:
 - Strain gauges
 - Wiring material
 - Solder material
 - Bonding
 - Coating
- > Connectors:
 - Connectors and pin definitions duplicated from existing balance

HMB3 Moisture Check

The 12th International Symposium on Strain-Gauge Balances, Buffalo, NY

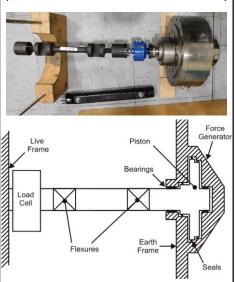

May 2022 © ETW GmbH. All rights reserved.




Half-Model Balance Calibration Rig In Balance Calibration Room

- > PC-controlled, semi-automatic, five-component calibration for HM balance
- > Comprehensively air-conditioned facility for calibration at ambient condition
- 2x 50 kN, 2x 5 kN pneumatic Force generators controlled by three PGUs (working medium: GN2)
- Applied load is measured by high quality "Interface" load cells, installed between the Live frame (Force train) and the Force generator
- > Combined loading of up to four components possible

Pressure generating units

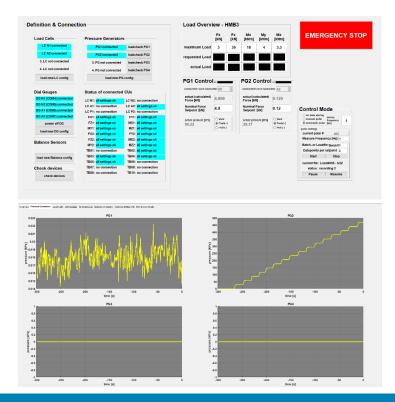


Force generating units (FG, Load cell, Force train)

The 12th International Symposium on Strain-Gauge Balances, Buffalo, NY

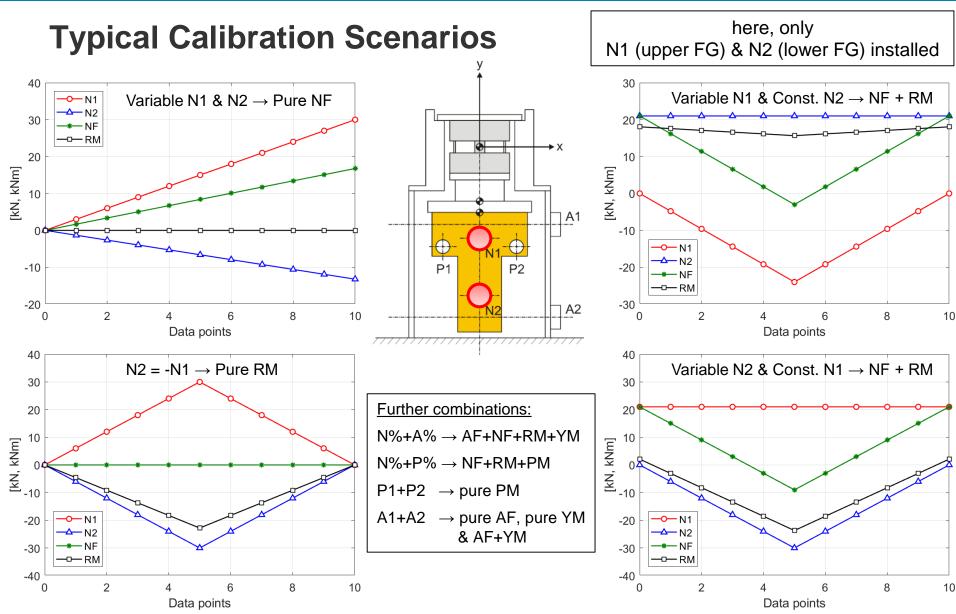
Half-Model Balance Calibration Rig Attached to Model Cart

- > Original calibration equipment designed for in-situ calibration on model cart
- > Earth loading frame connected to base of turntable
- > Live loading frame attached to base of balance / top hat



Recent Modernization of Calibration Facility

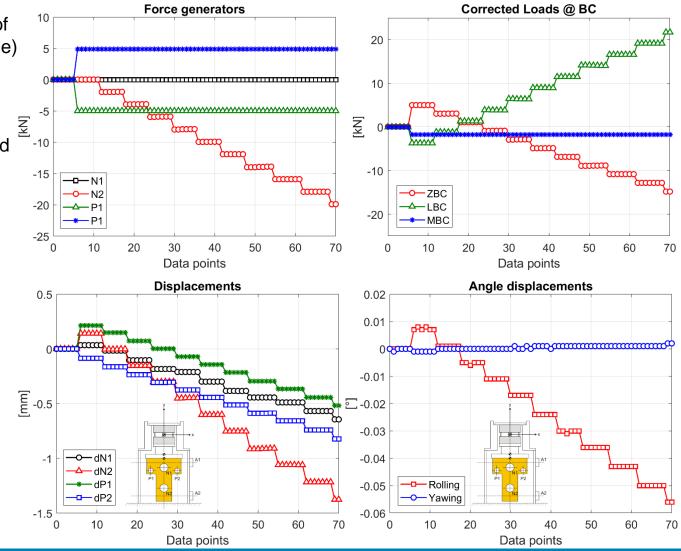
- Four new Pressure Generating Units with new Three-Way Valves
 - Provide more reliable, precise and faster pressure inputs to the Force Generators



- New Calibration Control & Monitoring and Data Acquisition Program
 - Provides enhanced protection against overload
 - Enables optimizing and automatizing calibration procedure → improving calibration efficiency

The 12th International Symposium on Strain-Gauge Balances, Buffalo, NY

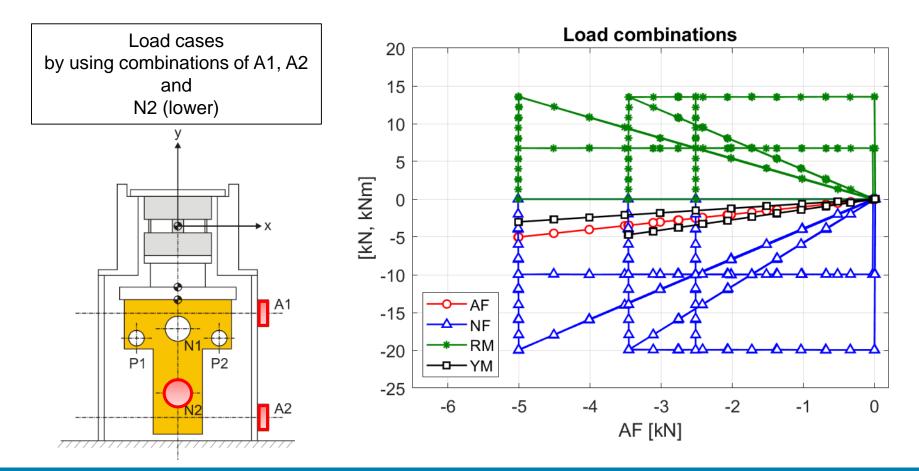
Page 14


Calibration Body Displacements

- Simultaneous monitoring of calibration body (Live frame) behaviour
- Instruments: 2x Q-Flexes, 4x digital dial gauges
- Applied loads are corrected for calibration body deformations

Digital Dial Gauge

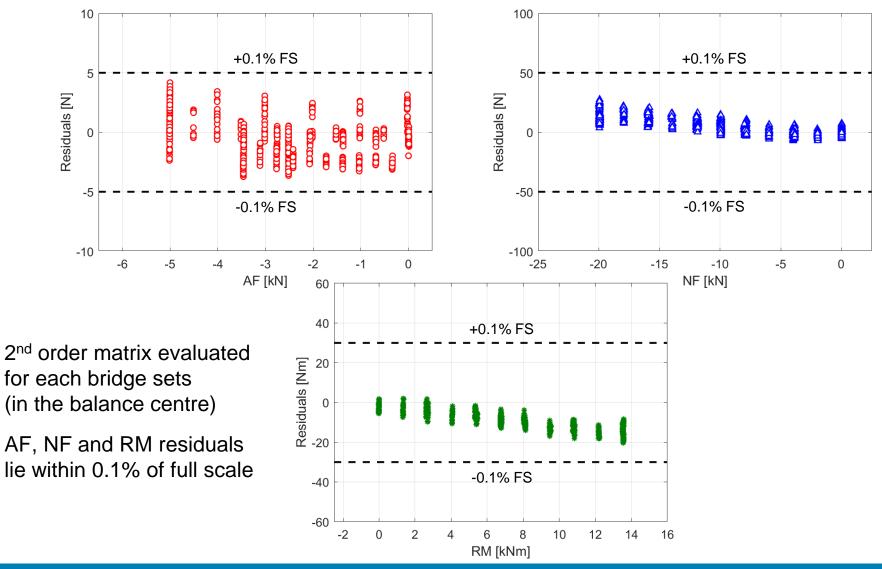
The 12th International Symposium on Strain-Gauge Balances, Buffalo, NY


May 2022 © ETW GmbH. All rights reserved.

Page 15

Calibration Results (HMB2)

- > First full calibration of HMB2 performed in 2020 \rightarrow 453 load cases including repeat. control & zero measurements
- > First full calibration of HMB3 conducted in 2021 \rightarrow 423 load cases were tested



>

>

Calibration Results (HMB2)

Calibration Results

- Comparison of theoretical (NLR-FEM) and actual (ETW-Calibration) strain-gauge bridge outputs for max. static single loads
- > Both balances behave as predicted from the design phase

HMB2	+AF	+NF	+RM	+PM	+YM
B1AF	7.25				
B1NF		9.21			
B1RM			5.03		
B1PM				14.10	
B1YM					4.90

Theoretical outputs [mV]

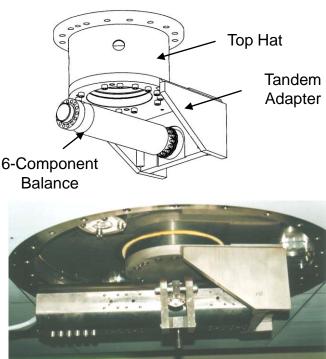
Actual outputs [mV]

HMB2	+AF	+NF	+RM	+PM	+YM
B1AF	8.93				
B1NF		10.52			
B1RM			5.77		
B1PM				19.02	
B1YM					5.12

Theoretical outputs [mV]

HMB3	+AF	+NF	+RM	+PM	+YM
B1AF	10.70				
B1NF		8.25			
B1RM			6.63		
B1PM				10.60	
B1YM					4.39

Actual outputs [mV]


HMB3	+AF	+NF	+RM	+PM	+YM
B1AF	10.39				
B1NF		8.28			
B1RM			6.64		
B1PM				12.71	
B1YM					4.30

Conclusions and Outlook

- ETW's half-span model testing capability allows high Reynolds number testing up to 80 million
- HMB1 is the key driver for success on ETW's half model testing
- > HMB2 & HMB3 have been developed to enhance ETW's half model testing capability
- The new NLR balances have been optimized using current state of the art design methodologies to provide optimum sensitivity in all measured components combined with high levels of stiffness
- The balance interface with the model cart has been changed to improve balance exchangeability
- The first full calibrations of both balances show that they fulfil the ETW's strict specifications and are ready for client tests
- Validation Test using "Tandem Method" and Wind-on commissioning tests will be performed in the near future

